Effect of captopril on skeletal muscle angiogenic growth factor responses to exercise

Abstract
Acute exercise increases vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), and basic fibroblast growth factor (bFGF) mRNA levels in skeletal muscle, with the greatest increase in VEGF mRNA. VEGF functions via binding to the VEGF receptors Flk-1 and Flt-1. Captopril, an angiotensin-converting enzyme inhibitor, has been suggested to reduce the microvasculature in resting and exercising skeletal muscle. However, the molecular mechanisms responsible for this reduction have not been investigated. We hypothesized that this might occur via reduced VEGF, TGF-β1, bFGF, Flk-1, and Flt-1 gene expression at rest and after exercise. To investigate this, 10-wk-old female Wistar rats were placed into four groups ( n = 6 each): 1) saline + rest; 2) saline + exercise; 3) 100 mg/kg ip captopril + rest; and 4) 100 mg/kg ip captopril + exercise. Exercise consisted of 1 h of running at 20 m/min on a 10° incline. VEGF, TGF-β1, bFGF, Flk-1, and Flt-1 mRNA were analyzed from the left gastrocnemius by quantitative Northern blot. Exercise increased VEGF mRNA 4.8-fold, TGF-β1 mRNA 1.6-fold, and Flt-1 mRNA 1.7-fold but did not alter bFGF or Flk-1 mRNA measured 1 h after exercise. Captopril did not affect the rest or exercise levels of VEGF, TGF-β1, bFGF, and Flt-1 mRNA. Captopril did reduce Flk-1 mRNA 30–40%, independently of exercise. This is partially consistent with the suggestion that captopril may inhibit capillary growth.