A numerical approximation for the simple bifurcation problems
- 1 January 1989
- journal article
- research article
- Published by Taylor & Francis in Numerical Functional Analysis and Optimization
- Vol. 10 (3-4) , 383-400
- https://doi.org/10.1080/01630568908816309
Abstract
A splitting iteration method is used to approximate the simple bifurcation point and Moore's extended system [14] for the simple bifurcation problems is rewritten here in a symmetric form. The solution paths across the bifurcation point are parametrized in a global structure and traced with a slightly enlarged system, Numerical examples are presented.Keywords
This publication has 16 references indexed in Scilit:
- Efficient Numerical Pathfollowing Beyond Critical PointsSIAM Journal on Numerical Analysis, 1987
- Rank revealing QR factorizationsLinear Algebra and its Applications, 1987
- Convergence Cones Near BifurcationSIAM Journal on Numerical Analysis, 1986
- On Solving Nonlinear Equations with Simple Singularities or Nearly Singular SolutionsSIAM Review, 1985
- Ein quadratisch konvergentes Verfahren zur Berechnung einfacher singulärer Nullstellen und dessen Anwendung zur Bestimmung einfacher BifurkationspunkteComputing, 1984
- Path following near bifurcationCommunications on Pure and Applied Mathematics, 1981
- The numerical treatment of non-trivial bifurcation pointsNumerical Functional Analysis and Optimization, 1980
- Factorizing symmetric indefinite matricesLinear Algebra and its Applications, 1976
- Solution of Sparse Indefinite Systems of Linear EquationsSIAM Journal on Numerical Analysis, 1975
- Bifurcation from simple eigenvaluesJournal of Functional Analysis, 1971