Skin layer‐specific transcriptional profiles in normal and recessive yellow (Mc1re/Mc1re) mice

Abstract
The melanocortin 1 receptor (Mc1r) plays a central role in cutaneous biology, but is expressed at very low levels by a small fraction of cells in the skin. In humans, loss-of-function MC1R mutations cause fair skin, freckling, red hair, and increased predisposition to melanoma; in mice, Mc1r loss-of-function is responsible for the recessive yellow mutation, associated with pheomelanic hair and a decreased number of epidermal melanocytes. To better understand how Mc1r signaling affects different cutaneous phenotypes, we examined large-scale patterns of gene expression in different skin components (whole epidermal sheets, basal epidermal cells and whole skins) of neonatal (P2.5) normal and recessive yellow mice, starting with a 26K mouse cDNA microarray. From c. 17 000 genes whose levels could be accurately measured in neonatal skin, we identified 883, 2097 and 552 genes that were uniquely expressed in the suprabasal epidermis, basal epidermis and dermis, respectively; specific biologic roles could be assigned for each class. Comparison of normal and recessive yellow mice revealed 69 differentially expressed genes, of which the majority had not been previously implicated in Mc1r signaling. Surprisingly, many of the Mc1r-dependent genes are expressed in cells other than melanocytes, even though Mc1r expression in the skin is confined almost exclusively to epidermal melanocytes. These results reveal new targets for Mc1r signaling, and point to a previously unappreciated role for a Mc1r-dependent paracrine effect of melanocytes on other components of the skin.