Cell Surface Hydrophobicity as a Pellicle Formation Factor in Film Strain ofSaccharomyces

Abstract
The film strain of Saccharomyces grows through non-film and film stages. The differences in cell surface hydrophobicity were examined at both stages. The degree of hydrophobic was quantitatively determined by comparing distribution ratios of cells between buffered aqueous and organic solvent phases. The cell surface in the film stage was more hydrophobic than that in the non-film stage, whereas the inherent non-film strain of Saccharomyces always showed low hydrophobicity. These results indicate that the change from non-film to film stage was due to a change in cells from hydrophilic to hydrophobic. The effects of growth conditions on hydrophobicity were further examined with the film strain Saccharomyces bayanus. Ethanol as sole carbon source more efficiently increased hydrophobicity than glucose. The increase in hydrophobicity seemed to depend upon respiration accompanying assimilation of ethanol. It was also found that the addition of a limited amount of biotin, as well as higher pH in medium lowered hydrophobicity. Variation in degree of pellicle formation was positively related to that of cell surface hydrophobicity.