Nb3Sn(Ti) powder metallurgy processed high field superconductors

Abstract
Powder metallurgy processed Nb3Sn(Ti) superconducting wires were fabricated with Sn x wt. % Ti cores for 0≤x≤3, 16 or 22 vol % cores, and a Cu 45 wt. % Nb composite. The processing used swaging, cold hydrostatic extrusions, wire drawing and heat treatments of 750 °C for two to four days. Nominal areal reductions of 104 were used. Hydride‐dehydride Nb and rotating electrode processed Nb powders gave the same performance. Overall critical current densities Jc were measured between 4.2 and 1.8 K for applied fields up to 23 T. Jc increased with increased Ti and/or Sn content. The Nb3Sn(Ti) wires using a Sn 3 wt. % Ti, 22 vol % core gave Jc >104 A/cm2 at 20 T and 4.2 K and Jc =104 A/cm2 at 23 T at 1.8 K. Removal of the precompression of the matrix increased Jc by about a factor of 2 at 20 T and 4.2 K.