Calibration of an item pool for assessing the burden of headaches: An application of item response theory to the Headache Impact Test (HIT™)

Abstract
Background: Measurement of headache impact is important in clinical trials, case detection, and the clinical monitoring of patients. Computerized adaptive testing (CAT) of headache impact has potential advantages over traditional fixed-length tests in terms of precision, relevance, real-time quality control and flexibility. Objective: To develop an item pool that can be used for a computerized adaptive test of headache impact. Methods: We analyzed responses to four well-known tests of headache impact from a population-based sample of recent headache sufferers (n = 1016). We used confirmatory factor analysis for categorical data and analyses based on item response theory (IRT). Results: In factor analyses, we found very high correlations between the factors hypothesized by the original test constructers, both within and between the original questionnaires. These results suggest that a single score of headache impact is sufficient. We established a pool of 47 items which fitted the generalized partial credit IRT model. By simulating a computerized adaptive health test we showed that an adaptive test of only five items had a very high concordance with the score based on all items and that different worst-case item selection scenarios did not lead to bias. Conclusion: We have established a headache impact item pool that can be used in CAT of headache impact.