An ATP-inhibited soluble 5'-nucleotidase of rat kidney
- 1 February 1988
- journal article
- Published by American Physiological Society in American Journal of Physiology-Renal Physiology
- Vol. 254 (2) , F191-F195
- https://doi.org/10.1152/ajprenal.1988.254.2.f191
Abstract
Hydrolysis of 5'-AMP by 5'-nucleotidase is a possible source of adenosine in the kidney. A renal membrane-bound ecto-5'-nucleotidase has been previously described. The present study deals with the catalytic properties of a 5'-AMP phosphohydrolase partially purified from high-speed supernatants of rat kidney homogenates. It exhibits phosphatase activity toward 5'-AMP, 5'-IMP, and 5'-GMP, but not toward 2'- and 3'-AMP and corresponds therefore to a 5'-nucleotidase. The hydrolysis of 5'-AMP by the soluble 5'-nucleotidase requires divalent cations. Maximal activity is reached with 10 microM of either Mn2+ or Co2+, whereas half-maximal activity is obtained with approximately 400 microM Mg2+. The soluble 5'-nucleotidase exhibits Michaelis-Menten kinetics with a Km of 9.5 microM for 5'-AMP. In the presence of 1 mM of free Mg2+, physiological concentrations of ATP provoke an increase of the Km for 5'-AMP and a decrease of Vmax. An increase of the pH of 0.4 units in the pH range 6.4-7.4 roughly doubles the rate of hydrolysis of 5'-AMP. The effects of ATP and of the pH are compatible with a role of the renal soluble 5'-nucleotidase in the hydrolysis of 5'-AMP and in the production of adenosine during hypoxia.Keywords
This publication has 0 references indexed in Scilit: