Ehrlich-Schwoebel barrier controlled slope selection in epitaxial growth

Abstract
We examine the step dynamics in a 1+1 dimensional model of epitaxial growth based on the BCF-theory. The model takes analytically into account the diffusion of adatoms, an incorporation mechanism and an Ehrlich-Schwoebel barrier at step edges. We find that the formation of mounds with a stable slope is closely related to the presence of an incorporation mechanism. We confirm this finding using a Solid-On-Solid model in 2+1 dimensions. In the case of an infinite step edge barrier we are able to calculate the saturation profile analytically. Without incorporation but with inclusion of desorption and detachment we find a critical flux for instable growth but no slope selection. In particular, we show that the temperature dependence of the selected slope is solely determined by the Ehrlich-Schwoebel barrier which opens a new possibility in order to measure this fundamental barrier in experiments.