A comparative study by serial electron microscopy of neuromuscular junctions in the dimorphic claws of the snapping shrimp,Alpheus heterochelis

Abstract
We compared the neuromuscular junctions on the main closer muscle in the first pair of chelipeds in the snapping shrimp Alpheus heterochelis by serial section electron microscopy. We sought an ultrastructural basis for the different behavioral and physiological functions of these dimorphic claws and for the role of the nervous system in claw transformation. We were unable to detect any statistically significant morphological differences between the junctions. Further, we found the muscle fiber populations and filament arrangements, as well as the electrical properties of the fibers, to be more homogeneous and similar to each other in A. heterochelis than those reported for another species, A. armillatus. We consider our results in light of recent data on the anatomy and electrical properties of the motor neurons within the CNS and conclude that the neural trigger for claw transformation involves factors not revealed by conventional electron microscopy.