Complete quantum teleportation using nuclear magnetic resonance

Abstract
Quantum mechanics provides spectacular new information processing abilities (Bennett 1995, Preskill 1998). One of the most unexpected is a procedure called quantum teleportation (Bennett et al 1993) that allows the quantum state of a system to be transported from one location to another, without moving through the intervening space. Partial implementations of teleportation (Bouwmeester et al 1997, Boschi et al 1998) over macroscopic distances have been achieved using optical systems, but omit the final stage of the teleportation procedure. Here we report an experimental implementation of the full quantum teleportation operation over inter-atomic distances using liquid state nuclear magnetic resonance (NMR). The inclusion of the final stage enables for the first time a teleportation implementation which may be used as a subroutine in larger quantum computations, or for quantum communication. Our experiment also demonstrates the use of quantum process tomography, a procedure to completely characterize the dynamics of a quantum system. Finally, we demonstrate a controlled exploitation of decoherence as a tool to assist in the performance of an experiment.
All Related Versions