Neutrino-induced neutron spallation and supernova r-process nucleosynthesis
Preprint
- 5 November 1996
Abstract
In order to explore the consequences of the neutrino irradiation for the supernova r-process nucleosynthesis, we calculate the rates of charged-current and neutral-current neutrino reactions on neutron-rich heavy nuclei, and estimate the average number of neutrons emitted in the resulting spallation. Our results suggest that charged-current $\nu_e$ captures can be important in breaking through the waiting-point nuclei at N=50 and 82, while still allowing the formation of abundance peaks. Furthermore, after the r-process freezes out, there appear to be distinctive neutral-current and charged-current postprocessing effects. A subtraction of the neutrino postprocessing effects from the observed solar r-process abundance distribution shows that two mass regions, A=124-126 and 183-187, are inordinately sensitive to neutrino postprocessing effects. This imposes very stringent bounds on the freeze-out radii and dynamic timescales governing the r-process. Moreover, we find that the abundance patterns within these mass windows are entirely consistent with synthesis by neutrino interactions. This provides a strong argument that the r-process must occur in the intense neutrino flux provided by a core-collapse supernova.
Keywords
All Related Versions
- Version 1, 1996-11-05, ArXiv
- Published version: Physical Review C, 55 (3), 1532.
This publication has 0 references indexed in Scilit: