Abstract
We consider the problem of deriving Bayesian inference procedures via the concept of relative surprise. The mathematical concept of surprise has been developed by I.J. Good in a long sequence of papers. We make a modification to this development that permits the avoidance of a serious defect; namely, the change of variable problem. We apply relative surprise to the development of estimation, hypothesis testing and model checking procedures. Important advantages of the relative surprise approach to inference include the lack of dependence on a particular loss function and complete freedom to the statistician in the choice of prior for hypothesis testing problems. Links are established with common Bayesian inference procedures such as highest posterior density regions, modal estimates and Bayes factors. From a practical perspective new inference procedures arise that possess good properties.

This publication has 22 references indexed in Scilit: