Sleep and circadian rhythm during a short space mission

Abstract
An experiment was conducted to assess sleep and circadian regulation in an orbiting spacecraft. In orbit the weakened influence of 24-h zeitgebers could result in delayed circadian phases with the possibility of a transition to free-running circadian rhythms. This and the specific stressors of a space mission may lead to changes in ultradian sleep regulation and in reduced sleep quantity and quality. During the mission sleep was recorded polygraphically on tape, as was body temperature. Daytime alertness was rated subjectively by a mood questionnaire. For comparison the same parameters were measured during a baseline period preceding the space mission. The circadian rhythms of body temperature and alertness were found to be delayed in space compared to baseline. This may mark a phase shift or the transition to a circadian state of free-run. Sleep was shorter and more disturbed. The structure of sleep was significantly altered. In space REM latency was shorter, there was less REM sleep in the second non-REM/REM cycle, and slow-wave sleep was redistributed from the first to the second cycle. The self-assessed mood resembled sleep disturbances and adaptation to the space environment. Reduced sleep quality and quantity are likely to result in fatigue and lower daytime performance. Countermeasures should be adopted to improve sleep of astronauts.