Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria

Abstract
A large-scale production system of uridine 5'-diphospho-galactose (UDP-Gal) has been established by the combination of recombinant Escherichia coli and Corynebacterium ammoniagenes. Recombinant E. coli that overexpress the UDP-Gal biosynthetic genes galT, galK, and galU were generated. C. ammoniagenes contribute the production of uridine triphosphate (UTP), a substrate for UDP-Gal biosynthesis, from orotic acid, an inexpensive precursor of UTP. UDP-Gal accumulated to 72 mM (44 g/L) after a 21 h reaction starting with orotic acid and galactose. When E. coli cells that expressed the alpha1,4-galactosyltransferase gene of Neisseria gonorrhoeae were coupled with this UDP-Gal production system, 372 mM (188 g/L) globotriose (Galalpha1-4Galbeta1-4Glc), a trisaccharide portion of verotoxin receptor, was produced after a 36 h reaction starting with orotic acid, galactose, and lactose. No oligosaccharide by-products were observed in the reaction mixture. The production of globotriose was several times higher than that of UDP-Gal. The strategy of producing sugar nucleotides by combining metabolically engineered recombinant E. coli with a nucleoside 5'-triphosphate producing microorganism, and the concept of producing oligosaccharides by coupling sugar nucleotide production systems with glycosyltransferases, can be applied to the manufacture of other sugar nucleotides and oligosaccharides.

This publication has 19 references indexed in Scilit: