Canonical Transformations in Quantum Mechanics
Preprint
- 25 May 1992
Abstract
Three elementary canonical transformations are shown both to have quantum implementations as finite transformations and to generate, classically and infinitesimally, the full canonical algebra. A general canonical transformation can, in principle, be realized quantum mechanically as a product of these transformations. It is found that the intertwining of two super-Hamiltonians is equivalent to there being a canonical transformation between them. A consequence is that the procedure for solving a differential equation can be viewed as a sequence of elementary canonical transformations trivializing the super-Hamiltonian associated to the equation. It is proposed that the quantum integrability of a system is equivalent to the existence of such a sequence.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: