Further Asymptotic Laws of Planar Brownian Motion

Abstract
The asymptotic distributions for large times of a variety of additive functionals of planar Brownian motion $Z$ are derived. Associated with each point in the plane, and with the point infinity, there is a complex Brownian motion governing the asymptotic behavior of windings of $Z$ close to that point. An independent Gaussian field over the plane governs fluctuations in local occupation times of $Z$, while a further independent family of complex Brownian sheets governs finer features of the windings of $Z$. These results unify and extend earlier results of Kallianpur and Robbins, Spitzer, Kasahara and Kotani, Messulam and the authors.

This publication has 0 references indexed in Scilit: