A review of recent results on large-scale structure and galaxy formation in a model with hot dark matter and cosmic strings is given. With cosmic strings seeding perturbations, many of the arguments against hot dark matter disappear. It is shown that spherical accretion about loops leads to dark matter haloes with flat velocity rotation curves. Velocity perturbations due to wakes behind long, moving strings lead to a network of planar overdensities with a distinguished scale of slightly less than 40×40 Mpc2. If the mass per unit length μ exceeds a certain bound, then the wakes become nonlinear by the present time. In this case, their thickness can be calculated.