Animating reactive motions for biped locomotion
- 10 November 2004
- conference paper
- Published by Association for Computing Machinery (ACM)
Abstract
In this paper, we propose a new method for simulating reactive motions for running or walking human figures. The goal is to generate realistic animations of how humans compensate for large external forces and maintain balance while running or walking. We simulate the reactive motions of adjusting the body configuration and altering footfall locations in response to sudden external disturbance forces on the body. With our proposed method, the user first imports captured motion data of a run or walk cycle to use as the primary motion. While executing the primary motion, an external force is applied to the body. The system automatically calculates a reactive motion for the center of mass and angular momentum around the center of mass using an enhanced version of the linear inverted pendulum model. Finally, the trajectories of the generalized coordinates that realize the precalculated trajectories of the center of mass, zero moment point, and angular momentum are obtained using constrained inverse kinematics. The advantage of our method is that it is possible to calculate reactive motions for bipeds that preserve dynamic balance during locomotion, which was difficult using previous techniques. We demonstrate our results on an application that allows a user to interactively apply external perturbations to a running or walking virtual human model. We expect this technique to be useful for human animations in interactive 3D systems such as games, virtual reality, and potentially even the control of actual biped robots.Keywords
This publication has 18 references indexed in Scilit:
- Efficient synthesis of physically valid human motionACM Transactions on Graphics, 2003
- Motion capture-driven simulations that hit and reactPublished by Association for Computing Machinery (ACM) ,2002
- Motion graphsACM Transactions on Graphics, 2002
- Interactive control of avatars animated with human motion dataACM Transactions on Graphics, 2002
- Motion textureACM Transactions on Graphics, 2002
- Synthesis of complex dynamic character motion from simple animationsACM Transactions on Graphics, 2002
- A Dynamic Motion Control Technique for Human-like Articulated FiguresComputer Graphics Forum, 2001
- Style machinesPublished by Association for Computing Machinery (ACM) ,2000
- Parameterized gait synthesisIEEE Computer Graphics and Applications, 1996
- Fixed patterns of rapid postural responses among leg muscles during stanceExperimental Brain Research, 1977