Morphology, structure, and growth of nanoparticles produced in a carbon arc

Abstract
The morphology and crystalline microstructure of carbon-encapsulated nanoparticles produced in a Huffman-Krätschmer fullerene reactor are studied systematically as a function of location within the reactor. X-ray powder diffraction and high-resolution transmission electron microscopy are used to characterize powder harvested from the reactor walls and the inner and outer cores of the cathode deposit. We observe increased graphitization and crystallinity, more faceting, and more gaps between the nanoparticle and the encapsulating carbon cages in the cathode deposit when compared to the wall powder. We propose a growth model based on gas-phase nucleation to explain these observations, linking carbon arc nanoparticle synthesis to existing work on gas aggregation cluster sources.