A Study of the B-V Colour Temperature Relation

  • 22 April 1999
Abstract
We attempt to construct a B-V colour temperature relation for stars in the least model dependent way employing the best modern data. The fit we obtained with the form Teff = Teff((B-V)0,[Fe/H],log g) is well constrained and a number of tests show the consistency of the procedures for the fit. Our relation covers from F0 to K5 stars with metallicity [Fe/H] = -1.5 to +0.3 for both dwarfs and giants. The residual of the fit is 66 K, which is consistent with what are expected from the quality of the present data. Metallicity and surface gravity effects are well separated from the colour dependence. Dwarfs and giants match well in a single family of fit, differing only in log g. The fit also detects the Galactic extinction correction for nearby stars with the amount E(B-V) = 0.26 +/-0.03 mag/kpc. Taking the newly obtained relation as a reference we examine a number of B-V colour temperature relations and atmosphere models available in the literature. We show the presence of a systematic error in the colour temperature relation from synthetic calculations of model atmospheres; the systematic error across K0 to K5 dwarfs is 0.04-0.05 mag in B-V, which means 0.25-0.3 mag in Mv for the K star range. We also argue for the error in the temperature scale used in currently popular stellar population synthesis models; synthetic colours from these models are somewhat too blue for aged elliptical galaxies. We derive the colour index of the sun (B-V)sun = 0.627 +/-0.018, and discuss that redder colours (e.g., 0.66-0.67) often quoted in the literature are incompatible with the colour-temperature relation.

This publication has 0 references indexed in Scilit: