Regulation of the Expression of Cyclin-Dependent Kinase Inhibitor p21 by E2A and Id Proteins
Open Access
- 1 October 1997
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 17 (10) , 5888-5896
- https://doi.org/10.1128/mcb.17.10.5888
Abstract
The helix-loop-helix transcription factor E2A plays important roles not only in promoting cellular differentiation but also in suppressing cell growth. Id proteins, the inhibitors of E2A, have opposite effects on cell differentiation and growth. To understand the mechanisms by which E2A suppresses cell growth, we examined the role of E2A in regulating the expression of the cyclin-dependent kinase inhibitor p21CIP1/WAF1/SD11, which prevents cell cycle progression upon overexpression. By using transient-cotransfection assays of luciferase reporter constructs in HeLa cells, we have found that overexpression of E2A can transcriptionally activate the p21 gene. To identify the sequences that mediate this activation in the promoter of the p21 gene, we carried out mutational analyses. Out of the eight putative E2A-binding sequences (E1 to E8) in the promoter, the E1 to E3 sequences located close to the transcription start site are found to be essential. In addition, loss of the E boxes in the promoter also reduces p21 expression without cotransfection with E2A in HIT pancreatic cells, where the endogenous E2A-like activity is high. Furthermore, we have also shown that overexpression of E2A in 293T cells activates expression of the endogenous p21 gene at both the levels of mRNA and protein. In correlation with the finding that E47 overexpression leads to growth arrest in NIH 3T3 cells, we have shown that Id1 overexpression in NIH 3T3 cells accelerates cell growth and inhibits p21 expression. Taken together, these results provide insight into the mechanisms by which E2A and Id proteins control cell growth.Keywords
This publication has 40 references indexed in Scilit:
- The helix-loop-helix protein Id-1 and a retinoblastoma protein binding mutant of SV40 T antigen synergize to reactivate DNA synthesis in senescent human fibroblastsDevelopmental Genetics, 1996
- Inhibitors of mammalian G1 cyclin-dependent kinases.Genes & Development, 1995
- Conversion of Xenopus Ectoderm into Neurons by NeuroD, a Basic Helix-Loop-Helix ProteinScience, 1995
- Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor.Genes & Development, 1995
- G1 phase progression: Cycling on cueCell, 1994
- Cloning of Senescent Cell-Derived Inhibitors of DNA Synthesis Using an Expression ScreenExperimental Cell Research, 1994
- p21 is a universal inhibitor of cyclin kinasesNature, 1993
- WAF1, a potential mediator of p53 tumor suppressionCell, 1993
- The myoD Gene Family: Nodal Point During Specification of the Muscle Cell LineageScience, 1991
- The protein Id: A negative regulator of helix-loop-helix DNA binding proteinsPublished by Elsevier ,1990