Abstract
For the past twenty years, the small, 76-residue protein ubiquitin has been used as a model system to study protein structure, stability, folding and dynamics. In this time, ubiquitin has become a paradigm for both the experimental and computational folding communities. The folding energy landscape is now uniquely characterised with a plethora of information available on not only the native and denatured states, but partially structured states, alternatively folded states and locally unfolded states, in addition to the transition state ensemble. This Perspective focuses on the experimental characterisation of ubiquitin using a comprehensive range of biophysical techniques.