Efficient Two-Photon Light Amplification by a Coherent Biexciton Wave

Abstract
A reversible coupling between photon pair states and a long-lived, highly coherent biexciton wave in CuCl allows efficient phase-sensitive two-photon amplification or attenuation of ultrashort light pulses. We demonstrate a gain of 350 cm(-1) for a pump intensity of 1 MW/cm(2), nearly 2 orders of magnitude higher than that achievable with conventional parametric crystal amplifiers. We develop a theoretical model that describes this new type of parametric converter where the light pump is replaced by a coherent biexciton wave and show that it is well suited for the generation of entangled photons and the squeezing of an optical beam with ultrafast time gating.