Nuclear Magnetic Resonance Spectroscopy in the Earth Sciences: Structure and Dynamics

Abstract
Detailed knowledge of the structure and dynamics of the materials that make up the earth is necessary for fundamental understanding of most geological processes. Nuclear magnetic resonance spectroscopy is beginning to play an important role in investigations of inorganic solid materials, as well as of liquids and organic compounds; it has already contributed substantially to our knowledge of minerals and rocks, compositionally simplified analogs of magmas, and the surfaces of silicate crystals. The technique is particularly useful for determining local structure and ordering state in crystals, glasses, and liquids, and is sensitive to atomic motion at the time scales of diffusion and viscosity in silicates. New techniques offer promise for increased resolution for quadrupolar nuclei and for extension of experiments to high temperature and pressure.