On the implementation of the conjugate gradient Fourier transform method for scattering by planar plates
- 1 April 1990
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Antennas and Propagation Magazine
- Vol. 32 (2) , 20-26
- https://doi.org/10.1109/74.80495
Abstract
The accuracy of two conjugate gradient fast Fourier transform formulations for computing the electromagnetic scattering by resistive plates of an arbitrary periphery is discussed. One of the formulations is based on a discretization of the integral equations prior to the introduction of the Fourier transform, whereas the other is based on a similar discretization after the introduction of the Fourier transform. The efficiency and accuracy of these formulations are examined by comparison with measured data for rectangular and nonrectangular plates. The latter method is found to provide a more accurate computation of the plate scattering by eliminating aliasing errors (other than those due to undersampling). It is also found to be substantially more efficient. Its greatest advantage is realized when solving large systems generated by convolutional operators not yielding Toeplitz matrices, as is the case with plates having nonuniform resistivity.Keywords
This publication has 13 references indexed in Scilit:
- Improving the convergence rate of the conjugate gradient FFT method using subdomain basis functionsIEEE Transactions on Antennas and Propagation, 1989
- A vector-concurrent application of a conjugate gradient FFT algorithm to electromagnetic radiation and scattering problemsIEEE Transactions on Magnetics, 1989
- On the Formulation and Implementation of a Conjugate Gradient FFT MethodJournal of Electromagnetic Waves and Applications, 1989
- Solution to some electromagnetic problems using fast Fourier transform with conjugate gradient methodElectronics Letters, 1986
- Implementation of a self-sorting in-place prime factor FFT algorithmJournal of Computational Physics, 1985
- Calculation of High-Resolution SAR Distributions in Biological Bodies Using the FFT Algorithm and Conjugate Gradient Method (Short Papers)IEEE Transactions on Microwave Theory and Techniques, 1985
- Iterative computational techniques in scattering based upon the integrated square error criterionIEEE Transactions on Antennas and Propagation, 1984
- Implementation of the in-order prime factor transform for variable sizesIEEE Transactions on Acoustics, Speech, and Signal Processing, 1982
- Electromagnetic coupling through small apertures in a conducting screenIEEE Transactions on Antennas and Propagation, 1977
- Electromagnetic Scattering by Thin Conducting Plates at Glancing IncidenceProceedings of the Physical Society, 1958