Abstract
Three cDNAs (PgEMB22, 27 and 29) predicted to encode low-molecular-weight (LMW) heat-shock proteins (HSPs) were cloned and characterized from white spruce [Picea glauca (Moench) Voss] somatic embryo tissues by differentially screening a cotyledonary embryo cDNA library. Clone PgEMB22 is predicted to encode a putative mitochondria-localized LMW HSP, and PgEMB27 and 29 are predicted to encode different cytoplasmic class II LMW HSPs, although they share 84.7% identity within DNA coding regions and 83.0% identity for predicted proteins. They are developmentally regulated during somatic embryo development and subsequent embryo germination, in addition they show strong response to heat-shock stress. Transcripts of the two kinds of hsp genes could be detected in embryogenic tissues before induction of embryo maturation, but subsequently increased, being most abundant at late embryo stages. Gene expression levels were very low or not detectable in germinated plantlets or needle tissues from older plants. Abscisic acid and polyethylene glycol, stimulators for spruce embryo maturation, could also induce the hsp genes.