Anti-Ischemic Effect of a Novel Cardioprotective Agent, JTV519, Is Mediated Through Specific Activation of δ-Isoform of Protein Kinase C in Rat Ventricular Myocardium

Abstract
Background —A new 1,4-benzothiazepine derivative, JTV519, has a strong protective effect against Ca 2+ overload–induced myocardial injury. We investigated the effect of JTV519 on ischemia/reperfusion injury in isolated rat hearts. Methods and Results —At 30 minutes of reperfusion after 30-minute global ischemia, the percent recovery of left ventricular developed pressure was improved, and the creatine phosphokinase and lactate dehydrogenase leakage was reduced in a concentration-dependent manner when JTV519 was administered in the coronary perfusate both at 5 minutes before the induction of ischemia and at the time of reperfusion. The myocardial protective effect of JTV519 was completely blocked by pretreatment of the heart with GF109203X, a specific protein kinase C (PKC) inhibitor. In contrast, the effect of JTV519 was not affected by α 1 -, A 1 -, and B 2 -receptor blockers that couple with PKC in the cardiomyocyte. Both immunofluorescence images and immunoblots of JTV519-treated left ventricular myocardium and isolated ventricular myocytes demonstrated that this agent induced concentration-dependent translocation of the δ-isoform but not the other isoforms of PKC to the plasma membrane. Conclusions —The mechanism of cardioprotection by JTV519 against ischemia/reperfusion injury involves isozyme-specific PKC activation through a receptor-independent mechanism. This agent may provide a novel pharmacological approach for the treatment of patients with acute coronary diseases via a subcellular mechanism mimicking ischemic preconditioning.