Intracellular alkaline phosphatase activity in cultured human cancer cells

Abstract
The effect of saponin treatment in demonstrating intracellular portion of alkaline phosphatase activity in human cancer cell lines was evaluated. Previous reports using standard lead-salt techniques visualized enzyme almost exclusively on the plasma membrane and sometimes in the lysosomes. However, by treating cells with saponin before or during the cytochemical incubation, intracellular alkaline phosphatase became demonstrable at the endoplasmic reticulum, Golgi apparatus, Golgi-derived vesicles and mitochondria as well as lysosomes and plasma membrane. These intracellular catalytic activities were significantly inhibited by the specific amino acid inhibitors characteristic for each cell line, and this suggested that intracellular alkaline phosphatase is the same isoenzyme as that present in the plasma membrane. The results of our current and previous studies therefore indicate that saponin reveals latent intracellular alkaline phosphatase activity by changing the membrane's physical state; thereby increasing the availability of both catalytic and antigenic sites of the enzyme to substrate and to antibody respectively.