Is Leptin the Link Between Fat and Bone Mass?

Abstract
Recently, leptin has emerged as a potential candidate responsible for protective effects of fat on bone tissue. However, it remains difficult to draw a clear picture of leptin effects on bone metabolism because published data are sometimes conflicting or apparently contradictory. Beyond differences in models or experimental procedures, it is tempting to hypothesize that leptin exerts dual effects depending on bone tissue, skeletal maturity, and/or signaling pathway. Early in life, leptin could stimulate bone growth and bone size through direct angiogenic and osteogenic effects on stromal precursor cells. Later, it may decrease bone remodeling in the mature skeleton, when trabecular bone turnover is high, by stimulating osteoprotegerin (OPG) expression. Leptin negative effects on bone formation effected through central nervous system pathway could counterbalance these peripheral and positive effects, the latter being predominant when the blood-brain barrier permeability decreases or the serum leptin level rises above a certain threshold. Thus, the sex-dependent specificity of the relationship between leptin and bone mineral density (BMD) in human studies could be, at least in part, caused by serum leptin levels that are two- to threefold higher in women than in men, independent of adiposity. Although these hypotheses remain highly speculative and require further investigations, existing studies consistently support the role of leptin as a link between fat and bone.