Anodic Oxidation of Reductants in Electroless Plating

Abstract
The anodic oxidation of reductants (hypophosphite, formaldehyde, borohydride, dimethylamine borane, and hydrazine) was studied on different metal electrodes (Au, Pt, Pd, Ag, Cu, Ni, and Co) at various temperatures, with special interest in the catalytic aspect of electroless plating. The rate of the anodic oxidation strongly depended on the pH value, the concentration of reductants, and the nature of the metal electrode. The catalytic activities of the metals for the anodic oxidation of different reductants were evaluated by the potentials at a reference current density. The order of the catalytic activity with metal varied depending on the nature of the reductants. The catalytic activity series thus obtained can be utilized for choosing the reductant suitable for the metal to be deposited. Arrhenius plots of the anodic currents on different metals at a reference potential yielded their respective straight lines. Some correlations were observed between the catalytic activity and the activation energy. The catalytic activity series was discussed in connection with that for hydrogen electrode reaction.

This publication has 0 references indexed in Scilit: