Linkage of the acetylcholine transporter-vesamicol receptor to proteoglycan synaptic vesicles
- 30 June 1992
- journal article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 31 (25) , 5778-5784
- https://doi.org/10.1021/bi00140a013
Abstract
The relationship of the acetylcholine transporter-vesamicol receptor (AcChT-VR) to proteoglycan in Torpedo electric organ synaptic vesicles was investigated. The cholate-solubilized VR was immunoprecipitated by a monoclonal antibody directed against the SV1 epitope located in the glycosaminoglycan portion of the proteoglycan. AcChT that was photoaffinity-labeled with a tritiated high-affinity analogue of AcCh [cyclohexylmethyl cis-N-(4-azidophenacyl)-N-methylisonipecotate] and then denatured in sodium dodecyl sulfate also immunoprecipitated. The labeled AcChT exhibited a M(r) range of 100,000-200,000. Proteoglycan did not engage in detectable nonspecific reversible aggregation that might mask the presence of another subunit during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In vesicles permeabilized with cholate, the enzymes keratanase and testicular hyaluronidase inactivated binding of vesamicol and destroyed the SV1 epitope without detectable proteolysis. Other glycosaminoglycan-degrading enzymes were without effect. The results demonstrate that the AcChT-VR and proteoglycan are very strongly linked and that glycosaminoglycan-like polysaccharide controls the conformation of the VR. The unexpected linkage to proteoglycan suggests that AcChT-VR in intact terminals might communicate with extracellular matrix and participate in stabilization and operation of the synapse.Keywords
This publication has 0 references indexed in Scilit: