The effect of exchanger inhibitory peptide (XIP) on sodium-calcium exchange current in guinea pig ventricular cells.
- 1 March 1993
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 72 (3) , 497-503
- https://doi.org/10.1161/01.res.72.3.497
Abstract
We investigated the effect of exchanger inhibitory peptide (XIP) on Na-Ca exchange current (INa-Ca) in guinea pig ventricular cells. Cells were voltage-clamped with microelectrodes containing 20 mM Na+ and 14.0 mM EGTA ([Ca]i = 100 nM). An outward putative exchange current was stimulated when extracellular Na+ was reduced from 144 mM to zero (Li+ replaced Na+). This outward current showed a significant dependence on extracellular Ca2+. When Na+ removal was delayed for up to 40 minutes (in the absence of extracellular K+ or the presence of 3.0 mM ouabain to block the Na+ pump), outward INa-Ca increased presumably because [Na]i increased. Time-dependent increases of outward current in the absence of K+ could be abolished by reapplication of K+, which presumably reactivates the Na+ pump and reduces intracellular Na+. This effect is blocked in the presence of 3.0 mM ouabain. The dependence of this current on extracellular Ca2+, its dependence on intracellular Na+, and activation by extracellular Na+ reduction, together with its resistance to ouabain all suggest that it is a Na-Ca exchange current. After dialyzing the cell with 10 microM XIP, outward INa-Ca was largely abolished. This indicates that XIP, which is a rather large molecule, can enter the heart cell via the microelectrode in sufficient quantities to inhibit exchange. Inward INa-Ca was blocked secondary to the blockade of outward INa-Ca. L-type Ca2+ current (ICa) was not measurably affected by XIP.(ABSTRACT TRUNCATED AT 250 WORDS)Keywords
This publication has 20 references indexed in Scilit:
- Translocation mechanism of Na-Ca exchange in single cardiac cells of guinea pig.The Journal of general physiology, 1990
- Limitations of the whole cell patch clamp technique in the control of intracellular concentrationsBiophysical Journal, 1990
- Sodium Current-Induced Release of Calcium from Cardiac Sarcoplasmic ReticulumScience, 1990
- Sodium-Calcium Exchange in Excitable Cells: Fuzzy SpaceScience, 1990
- Inhibitors of sodium-calcium exchange: identification and development of probes of transport activityBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1989
- Relaxation of Isolated Ventricular Cardiomyocytes by a Voltage-Dependent ProcessScience, 1988
- Na-Ca exchange current in mammalian heart cellsNature, 1986
- Stimulatory effect of calcium chelators on Na+-Ca2+ exchange in cardiac sarcolemmal vesiclesCell Calcium, 1984
- Flexibility of an Active Center in Sodium-Plus-Potassium Adenosine TriphosphataseThe Journal of general physiology, 1969
- The Dual Effect of Lithium Ions on Sodium Efflux in Skeletal MuscleThe Journal of general physiology, 1968