From triangulated categories to cluster algebras

Abstract
The cluster category is a triangulated category introduced for its combinatorial similarities with cluster algebras. We prove that a cluster algebra A of finite type can be realized as a Hall algebra, called the exceptional Hall algebra, of the cluster category. This realization provides a natural basis for A. We prove new results and formulate conjectures on `good basis' properties, positivity, denominator theorems and toric degenerations.

This publication has 0 references indexed in Scilit: