Terrestrial Planet Formation I. The Transition from Oligarchic Growth to Chaotic Growth
Abstract
We use a hybrid, multiannulus, n-body-coagulation code to investigate the growth of km-sized planetesimals at 0.4-2 AU around a solar-type star. After a short runaway growth phase, protoplanets with masses of roughly 10^26 g and larger form throughout the grid. When (i) the mass in these `oligarchs' is roughly comparable to the mass in planetesimals and (ii) the surface density in oligarchs exceeds 2-3 g/sq cm at 1 AU, chaotic interactions among oligarchs produce a high merger rate which leads to the formation of several terrestrial planets. In disks with lower surface density, milder interactions produce several lower mass planets. In all disks, the planet formation timescale is roughly 10-100 Myr, similar to estimates derived from the cratering record and radiometric data.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: