Abstract
Addition of nitrogen to III-V semiconductor alloys radically changes their electronic properties. We report large-scale electronic structure calculations of GaAsN and GaPN using an approach that allows arbitrary states to emerge, couple, and evolve with composition. We find a novel mechanism of alloy formation where localized cluster states within the gap are gradually overtaken by a downwards moving conduction band edge, composed of both localized and delocalized states. This localized to delocalized transition explains many of the hitherto puzzling experimentally observed anomalies in III-V nitride alloys.