pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response
Open Access
- 6 February 2006
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 172 (4) , 565-575
- https://doi.org/10.1083/jcb.200508145
Abstract
Upon the accumulation of unfolded proteins in the mammalian endoplasmic reticulum (ER), X-box binding protein 1 (XBP1) premessenger RNA (premRNA) is converted to mature mRNA by unconventional splicing that is mediated by the endonuclease inositol-requiring enzyme 1. The transcription factor protein (p) XBP1 spliced (S), which is translated from mature XBP1 mRNA, contains the nuclear localization signal and the transcriptional activation domain and activates the transcription of target genes, including those encoding ER chaperones in the nucleus. We show that pXBP1 unspliced (U) encoded in XBP1 pre-mRNA was constitutively expressed and markedly accumulated at the recovery phase of ER stress. pXBP1(U) contained the nuclear exclusion signal instead of the transcriptional activation domain and shuttled between the nucleus and the cytoplasm. Interestingly, pXBP1(U) formed a complex with pXBP1(S), and the pXBP1(U)–pXBP1(S) complex was sequestered from the nucleus. Moreover, the complex was rapidly degraded by proteasomes because of the degradation motif contained in pXBP1(U). Thus, pXBP1(U) is a negative feedback regulator of pXBP1(S), which shuts off the transcription of target genes during the recovery phase of ER stress.Keywords
This publication has 30 references indexed in Scilit:
- IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNANature, 2002
- XBP1 mRNA Is Induced by ATF6 and Spliced by IRE1 in Response to ER Stress to Produce a Highly Active Transcription FactorCell, 2001
- Block of HAC1 mRNA Translation by Long-Range Base Pairing Is Released by Cytoplasmic Splicing upon Induction of the Unfolded Protein ResponseCell, 2001
- Endoplasmic Reticulum Stress-Induced Formation of Transcription Factor Complex ERSF Including NF-Y (CBF) and Activating Transcription Factors 6α and 6β That Activates the Mammalian Unfolded Protein ResponseMolecular and Cellular Biology, 2001
- ATF6 Activated by Proteolysis Binds in the Presence of NF-Y (CBF) Directly to thecis-Acting Element Responsible for the Mammalian Unfolded Protein ResponseMolecular and Cellular Biology, 2000
- Identification of the cis-Acting Endoplasmic Reticulum Stress Response Element Responsible for Transcriptional Induction of Mammalian Glucose-regulated ProteinsJournal of Biological Chemistry, 1998
- A Novel Mechanism for Regulating Activity of a Transcription Factor That Controls the Unfolded Protein ResponseCell, 1996
- Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic‐leucine zipper motif is required for the unfolded protein‐response pathwayGenes to Cells, 1996
- A transmembrane protein with a cdc 2+ CDC 28 - related kinase activity is required for signaling from the ER to the nucleusPublished by Elsevier ,1993
- Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinaseCell, 1993