Non-destructive optical measurement of relative phase between two Bose condensates
Preprint
- 21 March 1997
Abstract
We study the interaction of light with two Bose condensates as an open quantum system. The two overlapping condensates occupy two different Zeeman sublevels and two driving light beams induce a coherent quantum tunneling between the condensates. We derive the master equation for the system. It is shown that stochastic simulations of the measurements of spontaneously scattered photons establish the relative phase between two Bose condensates, even though the condensates are initially in pure number states. These measurements are non-destructive for the condensates, because only light is scattered, but no atoms are removed from the system. Due to the macroscopic quantum interference the detection rate of photons depends substantially on the relative phase between the condensates. This may provide a way to distinguish, whether the condensates are initially in number states or in coherent states.Keywords
All Related Versions
- Version 1, 1997-03-21, ArXiv
- Published version: Physical Review A, 56 (4), 2996.