Oligodendroglial reaction following spinal cord injury in rat: Transient upregulation of MBP mRNA

Abstract
The reaction of oligodendrocytes in response to traumatic injury of the CNS are poorly understood. In the present report we studied changes in the expression of a major constituent of CNS myelin, myelin basic protein (MBP), by immunohistochemistry and in situ hybridization from 6 h up to 2 weeks following partial transection of the spinal cord in adult rats. MBP immunohistochemistry showed degeneration of myelin at the lesion center and signs of myelin breakdown in necrotic foci in the dorsal and ventral funiculi proximal and distal to the lesion. In situ hybridization revealed that mRNA for MBP was downregulated at the local lesion site within the first day following injury, probably reflecting oligodendrocytes to undergo cell death. From 2 days on, however, MBP mRNA was conspicuously upregulated at the border of the lesion area. This “reactive” response of surviving oligodendrocytes, as indicated by increased levels of MBP mRNA, peaked around 8 days. At this time, oligodendrocytes displaying strong MBP in situ signal formed stripe‐like structures which were oriented radially toward the lesion center and arranged in parallel to neurofilament‐positive axons. At around 2 weeks post‐injury, MBP mRNA at the border of the lesion area was again downregulated to levels comparable to uninjured controls. These results show that traumatic injury of the spinal cord induces a “reactive” response of surviving oligodendrocytes adjacent to lesion sites. This response might represent an important component of local repair mechanisms. GLIA 23:278–284, 1998.