A Nonhomogeneous Boundary-Value Problem for the Korteweg–de Vries Equation Posed on a Finite Domain

Abstract
Studied here is an initial- and boundary-value problem for the Korteweg–de Vries equation posed on a bounded interval with nonhomogeneous boundary conditions. This particular problem arises naturally in certain circumstances when the equation is used as a model for waves and a numerical scheme is needed. It is shown here that this initial-boundary-value problem is globally well-posed in the L 2-based Sobolev space H s (0, 1) for any s ≥ 0. In addition, the mapping that associates to appropriate initial- and boundary-data the corresponding solution is shown to be analytic as a function between appropriate Banach spaces.