Abstract
In the context of the energy landscape description of supercooled liquids, we propose an explanation for the different behaviour of fragile and strong liquids. Above the Goldstein crossover temperature Tx, diffusion is interpreted as a motion in the phase space among unstable stationary points of the potential energy, that is among saddles. In this way two mechanisms of diffusion arise: mechanism A takes place when the system crosses potential energy barriers along stable uphill directions, while mechanism B consists in finding unstable downhill directions out of a saddle. Depending on the mutual value of the efficiency temperatures of A and B, we obtain two very different behaviours of the viscosity, reproducing the usual classification of liquids in fragile and strong. Moreover, this scenario very naturally predicts the possibility of a fragile-to-strong crossover when lowering the temperature.

This publication has 0 references indexed in Scilit: