A best constant and the Gaussian curvature
- 1 January 1986
- journal article
- Published by American Mathematical Society (AMS) in Proceedings of the American Mathematical Society
- Vol. 97 (4) , 737-747
- https://doi.org/10.1090/s0002-9939-1986-0845999-7
Abstract
For axisymmetric <!-- MATH $f \in {C^\infty }({S^2})$ --> we find conditions to make the scalar curvature of a metric pointwise conformal to the standard metric of . Closely related to these results, we prove that in the inequality (Moser [8]) <!-- MATH \begin{displaymath} \int_{{S^2}} {{e^u} \leq C{e^{\left\| {\nabla u} \right\|_2^2/16\pi \quad }}\forall u \in H_1^2({S^2})} {\text{ with }}\int_{{S^2}} {u = 0} , \end{displaymath} -->
Keywords
This publication has 7 references indexed in Scilit:
- Positive solutions of nonlinear elliptic equations involving critical sobolev exponentsCommunications on Pure and Applied Mathematics, 1983
- GAUSSIAN AND SCALAR CURVATURE, AN UPDATEPublished by Walter de Gruyter GmbH ,1982
- Nonlinear Analysis on Manifolds. Monge-Ampère EquationsPublished by Springer Nature ,1982
- Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaireJournal of Functional Analysis, 1979
- Existence and Conformal Deformation of Metrics With Prescribed Gaussian and Scalar CurvaturesAnnals of Mathematics, 1975
- Curvature Functions for Compact 2-ManifoldsAnnals of Mathematics, 1974
- On a Nonlinear Problem in Differential Geometry††AMS (MOS) 1970 SUBJECT CLASSIFICATION: 53C99, 35T50.‡‡Results obtained at the Courant Institute of Mathematical Sciences, New York University, under National Science Foundation Grant NSF-GP-27719.Published by Elsevier ,1973