Abstract
Marangoni convection is important in a variety of physical systems and occurs as a result of surface tension gradients at a liquid free surface. In general, liquid surface tension varies with temperature and species concentration in a binary fluid. If the temperature and concentration distributions make opposing contributions to the overall surface tension gradient at a free surface, convective motion, as well as heat and mass transfer within the system, is shown to depend on double‐diffusive effects. This situation is analogous to double‐diffusive natural convection, in that convection may occur, even though the overall surface tension difference along the free surface suggests stagnant fluid conditions.