Characterization of Drug Transport Through Tight-Junctional Pathway in Caco-2 Monolayer: Comparison with Isolated Rat Jejunum and Colon

Abstract
Drug transport through the tight-junctional pathway in Caco-2 monolayer was studied by examining the relationship between its permeability to hydrophilic drugs and membrane conductance. Compared with the rat isolated jejunum or colon, Caco-2 monolayer displayed high electrical resistance and low conductance, as well as low permeability to sulfanilic acid and FITC-dextran (M.W. 4000). However, there was a linear relationship between the drug permeability and partial Cl ion conductance for Caco-2 monolayer, rat jejunum and colon. Hence, the permeability to those drugs per unit of Cl conductance is similar in the three membranes, suggesting that the size (radius) of the tight-junctional pathway in the three membranes is similar. In addition, when the electrical resistance of Caco-2 monolayer was reduced to the same level as that of the jejunum or colon by pretreatment with disodium ethylenediamine-tetraacetate, its permeability to FITC-dextran became significantly higher than that of other membranes. Accordingly, the high resistance and the low permeability of Caco-2 monolayer compared with rat intestinal membrane may be due to structural differences between the membranes, rather than a difference in the tightness of the junction.

This publication has 23 references indexed in Scilit: