Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres.
- 1 May 1990
- journal article
- research article
- Published by Wiley in The Journal of Physiology
- Vol. 424 (1) , 133-149
- https://doi.org/10.1113/jphysiol.1990.sp018059
Abstract
1. Changes in force and stiffness were recorded simultaneously during 1 s isometric (fixed ends) tetani of single fibres isolated from the anterior tibialis muscle of Rana temporaria (temperature 1‐3 degrees C; sarcomere length, 2.10 micron). Stiffness was measured as the change in force that occurred in response to a 4 kHz sinusoidal length oscillation of the fibre. Some experiments were performed in which stiffness was determined from a fast (0.2 ms) length step that was applied to a ‘tendon‐free’ segment of the muscle fibre during the tetanus plateau. 2. A moderate degree of fatigue was produced by decreasing the time between tetani from 300 s (control) to 15 s. By this treatment the maximum tetanic force (Ftet) was reversibly reduced to 70‐75% of the control value. Maximum tetanic stiffness (Stet) was related to Ftet according to the following regression (both variables expressed as percentage of their control values): Stet = 0.369 Ftet + 62.91 (correlation coefficient, 0.95; P less than 0.001). A 25% decrease in isometric force during fatigue was thus associated with merely 9% reduction of fibre stiffness. 3. Whereas the rate of rise of force during tetanus was markedly reduced by fatiguing stimulation, the rate of rise of stiffness was only slightly affected. 4. Intracellular acidification (produced by raised extracellular CO2 concentration) largely reproduced the contractile changes observed during fatigue. However, for a given decrease in tetanic force there was a smaller reduction in fibre stiffness during acidosis than during fatigue. 5. Caffeine (0.5 mM) added to the fibre after development of fatigue and intracellular acidosis greatly potentiated the isometric twitch but did not affect maximum tetanic force. This finding provides evidence that the contractile system was fully activated during the tetanus plateau both in the fatigued state and during acidosis. 6. The results suggest that the decrease in contractile strength after frequent tetanization (intervals between tetani, 15 s) is attributable to altered kinetics of cross‐bridge function leading to reduced number of active cross‐bridges and, most significantly, to reduced force output of the individual bridge. The possible role of increased intracellular H+ concentration in the development of muscle fatigue is discussed.This publication has 33 references indexed in Scilit:
- Intracellular calcium and tension during fatigue in isolated single muscle fibres from Xenopus laevis.The Journal of Physiology, 1989
- Metabolic correlates of fatigue and of recovery from fatigue in single frog muscle fibers.The Journal of general physiology, 1978
- Muscular fatigue investigated by phosphorus nuclear magnetic resonanceNature, 1978
- Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles.The Journal of Physiology, 1978
- Composition of vacuoles and sarcoplasmic reticulum in fatigued muscle: electron probe analysis.Proceedings of the National Academy of Sciences, 1978
- Dynamic stiffness and crossbridge action in muscleEuropean Biophysics Journal, 1978
- Effect of changing the composition of the bathing solution upon the isometric tension—pCa relationship in bundles of crustacean myofibrilsThe Journal of Physiology, 1977
- Tension responses to sudden length change in stimulated frog muscle fibres near slack lengthThe Journal of Physiology, 1977
- Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle.The Journal of Physiology, 1975
- The compliance of contracting skeletal muscleThe Journal of Physiology, 1974