Linear spatial stability of pipe Poiseuille flow

Abstract
A theoretical study of the spatial stability of Poiseuille flow in a rigid pipe to infinitesimal disturbances is presented. Both axisymmetric and non-axisymmetric disturbances are considered. The coupled, linear, ordinary differential equations governing the propagation of a disturbance that has a constant frequency and is imposed at a specified location in the fluid are solved numerically for the complex eigenvalues, or wavenumbers, each of which defines a mode of propagation. A series solution for small values of the pipe radius is derived and step-by-step integration to the pipe wall is then performed. In order to ascertain the number of eigenvalues within a closed region, an eigenvalue search technique is used. Results are obtained for Reynolds numbers up to 10000. For these Reynolds numbers it is found that the pipe Poiseuille flow is spatially stable to all infinitesimal disturbances.

This publication has 11 references indexed in Scilit: