The Effects of Orography on Midlatitude Northern Hemisphere Dry Climates

Abstract
The role of mountains in maintaining extensive midlatitude arid regions in the Northern Hemisphere was investigated using simulations from the GFDL Global Climate Model with and without orography. In the integration with mountains, dry climates were simulated over central Asia and the interior of North America, in good agreement with the observed climate. In contrast, moist climates were simulated in the same regions in the integration without mountains. During all season but summer, large amplitude stationary waves occur in response to the Tibetan Plateau and Rocky Mountains. The midlatitude dry regions are located upstream of the troughs of these waves, where general subsidence and relatively infrequent storm development occur and precipitation is thus inhibited. In summer, this mechanism contributes to the dryness of interior North America as a stationary wave trough remains east of the Rockies, but is not effective in Eurasia due to seasonal changes in the atmospheric circulation. The dryness... Abstract The role of mountains in maintaining extensive midlatitude arid regions in the Northern Hemisphere was investigated using simulations from the GFDL Global Climate Model with and without orography. In the integration with mountains, dry climates were simulated over central Asia and the interior of North America, in good agreement with the observed climate. In contrast, moist climates were simulated in the same regions in the integration without mountains. During all season but summer, large amplitude stationary waves occur in response to the Tibetan Plateau and Rocky Mountains. The midlatitude dry regions are located upstream of the troughs of these waves, where general subsidence and relatively infrequent storm development occur and precipitation is thus inhibited. In summer, this mechanism contributes to the dryness of interior North America as a stationary wave trough remains east of the Rockies, but is not effective in Eurasia due to seasonal changes in the atmospheric circulation. The dryness...

This publication has 0 references indexed in Scilit: