Gene Expression in Pseudomonas aeruginosa : Evidence of Iron Override Effects on Quorum Sensing and Biofilm-Specific Gene Regulation
- 15 March 2001
- journal article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 183 (6) , 1990-6
- https://doi.org/10.1128/jb.183.6.1990-1996.2001
Abstract
Prior studies established that the Pseudomonas aeruginosa oxidative stress response is influenced by iron availability, whereas more recent evidence demonstrated that it was also controlled by quorum sensing (QS) regulatory circuitry. In the present study, sodA (encoding manganese-cofactored superoxide dismutase [Mn-SOD]) and Mn-SOD were used as a reporter gene and endogenous reporter enzyme, respectively, to reexamine control mechanisms that govern the oxidative stress response and to better understand how QS and a nutrient stress response interact or overlap in this bacterium. In cells grown in Trypticase soy broth (TSB), Mn-SOD was found in wild-type stationary-phase planktonic cells but not in a lasI or lasR mutant. However, Mn-SOD activity was completely suppressed in the wild-type strain when TSB was supplemented with iron. Reporter gene studies indicated that sodA transcription could be variably induced in iron-starved cells of all three strains, depending on growth stage. Iron starvation induction of sodA was greatest in the wild-type strain and least in the lasR mutant and was maximal in stationary-phase cells. Reporter experiments in the wild-type strain showed increased lasI::lacZ transcription in response to iron limitation, whereas the expression level in the las mutants was minimal and iron starvation induction of lasI::lacZ did not occur. Studies comparing Mn-SOD activity in P. aeruginosa biofilms and planktonic cultures were also initiated. In wild-type biofilms, Mn-SOD was not detected until after 6 days, although in iron-limited wild-type biofilms Mn-SOD was detected within the initial 24 h of biofilm establishment and formation. Unlike planktonic bacteria, Mn-SOD was constitutive in the lasI and lasR mutant biofilms but could be suppressed if the growth medium was amended with 25 microM ferric chloride. This study demonstrated that (i) the nutritional status of the cell must be taken into account when one is evaluating QS-based gene expression; (ii) in the biofilm mode of growth, QS may also have negative regulatory functions; (iii) QS-based gene regulation models based on studies with planktonic cells must be modified in order to explain biofilm gene expression behavior; and (iv) gene expression in biofilms is dynamic.Keywords
This publication has 70 references indexed in Scilit:
- The Involvement of Cell-to-Cell Signals in the Development of a Bacterial BiofilmScience, 1998
- CENSUS AND CONSENSUS IN BACTERIAL ECOSYSTEMS: The LuxR-LuxI Family of Quorum-Sensing Transcriptional RegulatorsAnnual Review of Microbiology, 1996
- A hierarchical quorum‐sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary‐phase sigma factor RpoSMolecular Microbiology, 1996
- MICROBIAL BIOFILMSAnnual Review of Microbiology, 1995
- Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus.Genes & Development, 1995
- Expression of Pseudomonas aeruginosa Virulence Genes Requires Cell-to-Cell CommunicationScience, 1993
- Intercellular signaling is required for developmental gene expression in Myxococcus xanthusDevelopmental Biology, 1986
- Evidence that mucoidPseudomonas aeruginosain the cystic fibrosis lung grows under iron-restricted conditionsFEMS Microbiology Letters, 1984
- A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye BindingAnalytical Biochemistry, 1976
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976