Role of the HIV Type 1 Glycoprotein 120 V3 Loop in Determining Coreceptor Usage
- 20 May 1999
- journal article
- research article
- Published by Mary Ann Liebert Inc in AIDS Research and Human Retroviruses
- Vol. 15 (8) , 731-743
- https://doi.org/10.1089/088922299310827
Abstract
Macrophage (M)-tropic HIV-1 isolates use the beta-chemokine receptor CCR5 as a coreceptor for entry, while T cell line-adapted (TCLA) strains use CXCR4 and dual-tropic strains can use either CCR5 or CXCR4. To investigate the viral determinants involved in choice of coreceptor, we used a fusion assay1 based on the infection of CD4+ HeLa cells that express one or both coreceptors with Semliki Forest virus (SFV) recombinants expressing the native HIV-1 gp160 of a primary M-tropic isolate (HIV-1BX08), a TCLA isolate (HIV-1LAI), or a dual-tropic strain (HIV-1MN). We examined whether the V3 region of these glycoproteins interacts directly with the corresponding coreceptors by assaying coreceptor-dependent cell-to-cell fusion mediated by the different recombinants in the presence of various synthetic linear peptides. Synthetic peptides corresponding to different V3 loop sequences blocked syncytium formation in a coreceptor-specific manner. Synthetic V2 peptides were also inhibitory for syncytium formation, but showed no apparent coreceptor specificity. A BX08 V3 peptide with a D320 R substitution retained no inhibitory capacity for BX08 Env-mediated cell-to-cell fusion, but inhibited LAI Env-mediated fusion as efficiently as the homologous LAI V3 peptide. The same mutation engineered in the BX08 env gene rendered it able to form syncytia on CD4+CXCR4+CCR5- HeLa cells and susceptible to inhibition by SDF-1alpha and MIP-1beta. Other substitutions tested (D320 Q/D324 N or S306 R) exhibited intermediate effects on coreceptor usage. These results underscore the importance of the V3 loop in modulating coreceptor choice and show that single amino acid modifications in V3 can dramatically modify coreceptor usage. Moreover, they provide evidence that linear V3 loop peptides can compete with intact cell surface-expressed gp120/gp41 for CCR5 or CXCR4 interaction.Keywords
This publication has 103 references indexed in Scilit:
- CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5Nature, 1996
- The β-Chemokine Receptors CCR3 and CCR5 Facilitate Infection by Primary HIV-1 IsolatesPublished by Elsevier ,1996
- A Dual-Tropic Primary HIV-1 Isolate That Uses Fusin and the β-Chemokine Receptors CKR-5, CKR-3, and CKR-2b as Fusion CofactorsCell, 1996
- Positioning of Positively Charged Residues in the V3 Loop Correlates with HIV Type 1 Syncytium-Inducing PhenotypeAIDS Research and Human Retroviruses, 1996
- Identification of RANTES, MIP-1α, and MIP-1β as the Major HIV-Suppressive Factors Produced by CD8 + T CellsScience, 1995
- HIV-1 Reverse Transcription A Termination Step at the Center of the GenomeJournal of Molecular Biology, 1994
- Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp!20 geneNature, 1991
- Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptorCell, 1987
- T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAVNature, 1984
- The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirusNature, 1984