A neural network model of the cerebellar cortex performing dynamic associations

Abstract
The present paper proposes a model which applies formal neural network modeling techniques to construct a theoretical representation of the cerebellar cortex and its performances in motor control. A schema that makes explicit use of propagation delays of neural signals, is introduced to describe the ability to store temporal sequences of patterns in the Golgi-granule cell system. A perceptron association is then performed on these sequences of patterns by the Purkinje cell layer. The model conforms with important biological constraints, such as the known excitatory or inhibitory nature of the various synapses. Also, as suggested by experimental evidence, the synaptic plasticity underlying the learning ability of the model, is confined to the parallel fiber — Purkinje cell synapses, and takes place under the control of the climbing fibers. The result is a neural network model, constructed according to the anatomy of the cerebellar cortex, and capable of learning and retrieval of temporal sequences of patterns. It provides a framework to represent and interpret properties of learning and control of movements by the cerebellum, and to assess the capacity of formal neural network techniques for modeling of real neural systems.

This publication has 17 references indexed in Scilit: