Modulations in antioxidant enzymes in different tissues of marine bivalvePerna viridis during heavy metal exposure

Abstract
Lipid peroxidation induced by metals at sub-lethal levels, alter physiological and biochemical characteristics of biological systems. To counter the detrimental effects of the prooxidant activity of metals, a group of antioxidant enzyme systems function in the organisms. The present study was performed to investigate into the lipid peroxidation product formation due to the exposure to effects of the metals namely aluminium, lead and cadmium at sub-lethal concentrations and the biological response through protective antioxidant enzyme activity in the marine mussels,Perna viridis Lin. This organism is a known bioindicator and bioconcentrator of metals in the environment. The results of the present study were: (a) accumulation of lead showed a definite linear increase during the period of exposure whereas aluminium and cadmium showed fluctuations. Mantle and gill tissues showed greater accumulation of metals when compared to digestive gland; (b) lead and aluminium induced lipid peroxidation was greater in tissues than the peroxidation induced by cadmium. Cadmium induced peroxidation was observed only after the day 7 of the exposure; (c) anti-oxidant enzymes activity levels were significantly higher in digestive gland and mantle than gills; (d) mantle was observed to significantly contribute to the organismal response to lipid peroxidation as indicated by high activity levels of anti-oxidant enzymes.